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Abstract. It is reported that a surface model of Polyakov strings undergoes a first-order phase transition
between smooth and crumpled (or branched polymer) phases. The Hamiltonian of the model contains the
Gaussian term and a deficit angle term corresponding to the weight of the integration measure dX in the
partition function.

PACS. 64.60.-i General studies of phase transitions – 68.60.-p Physical properties of thin films,
nonelectronic – 87.16.Dg Membranes, bilayers, and vesicles

1 Introduction

A large effort has been devoted to the understanding of the
phase structure of elastic membrane models of Polyakov-
Kleinert [1,2] and Helfrich [3]. The surface models are ex-
pected to undergo phase transitions between smooth and
crumpled phases at finite bending rigidity [4–14]. Numeri-
cal studies have also been concentrated on the phase tran-
sition [15–24].

The bending energy, which is an extrinsic curvature
term, plays an essential role in smoothing the surface.
In the ordinary model of membranes, the smooth phase
emerges owing to the bending energy. Except self-avoiding
surface models [25–29], we have currently no surface model
that has a smooth phase without the extrinsic curvature
term.

Baillie-Johnston et al. [30–33] investigated the dis-
cretized Polyakov random surface model with intrinsic
curvature terms in order to find smooth surfaces. One of
the models was recently investigated in [34] on relatively
larger lattices, however, there was no smooth phase in the
model, although branched polymer like phase was found.
We consider that the question about a smooth phase in the
models remains unanswered, and the surface model with
intrinsic curvatures remains to be studied. Thus, moti-
vated by the attempts of Baillie-Jhonston et al., we study
in this article a model with an intrinsic curvature term
and see that the smooth phase and the crumpled phase
are appeared and connected by a phase transition. Our
results may lead to better understanding of the role of cur-
vature energy in surface models undergoing phase transi-
tions and/or shape transformation, although the surfaces
are allowed to self-intersect and hence phantom.
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Two kinds of models are investigated; the tethered
model and the fluid model. The tethered model is defined
on fixed connectivity surfaces, and the fluid model on dy-
namically triangulated surfaces. The Hamiltonians of the
models are identical with each other. It will be shown
that the tethered model has the smooth and the crum-
pled phases, which are connected by a first-order phase
transition. Moreover, we will find in the fluid model that
there appears a new phase, which resembles the branched
polymer phase [35,36], between the smooth phase and the
crumpled one. We understand from the results obtained
in this article that the smooth phase is stable against such
as thermal fluctuations in each model defined only with
intrinsic variables of the surface.

2 Model

The partition function of the fluid model of fixed number
of vertices is defined by

Z =
∑

T

∫ N∏

i=1

dXi exp [−S(X, T )] , (1)

S(X, T ) = S1 − αS3,

where the center of the surface is fixed to remove
the translational zero mode. S(X, T ) denotes that the
Hamiltonian S depends on the position variables X of ver-
tices and the degree of freedom for the triangulation T .
S1 and S3 are defined by

S1 =
∑

(ij)

(Xi − Xj)
2
, S3 =

∑

i

log(δi/2π), (2)

where
∑

(ij) in S1 is the sum over bonds (ij) connect-
ing the vertices i and j. The bonds (ij) are edges of the



562 The European Physical Journal B

triangles. δi in equation (2) is the vertex angle, which is
the sum of the angles meeting at the vertex i. Recalling
that δi − 2π is the deficit angle, we call S3 the deficit
angle term. We note that the sum of the deficit angles∑

i(δi − 2π) is constant on surfaces of fixed genus be-
cause of the Gauss-Bonnet theorem. The partition func-
tion of the tethered model is, on the other hand, defined by
Z =

∫ ∏N
i=1 dXi exp [−S(X, T )], where T is fixed. Both S1

and S3 reflect intrinsic properties of the surface. Note also
that S1/N = 3/2, which comes from the scale invariance
property of Z in both models.

We should refer to a relation between the deficit angle
term S3 and the integration measure dXi of the parti-
tion function in equation (1). From a conformal field the-
oretical viewpoint [37–40], the integration measure

∏
i dXi

can be replaced by
∏

i qα
i dXi, where qi is the coordination

number of the vertex i. This α is believed to be 2α = 3. On
the other hand, qα

i is considered as a volume weight of the
vertex i in the measure dXi. Hence, it is possible to extend
2α to non-integer numbers by assuming that the weight
can be chosen arbitrarily. Moreover, it is also possible to
extend qi to continuous numbers because of the same rea-
son. Hence, the weight

∏
i qα

i can be replaced by
∏

i δα
i ,

which can also be written as exp(α
∑

i log δi). Including a
constant weight (2π)α, we have S3 in equation (2).

The model in this paper is very similar to the one
investigated in [30–34], where the fluid and the tethered
models were interpolated. A model in [30–34] includes the
term α

∑
i |qi − 6| or α

∑
i(qi − 6)2. Using the expression

log(δi/2π) = log[1 + (δi − 2π)/2π] and replacing δi by qi

and 2π by 6 in S3 of equation (2), we have the term pro-
portional to

∑
i(qi − 6)2 + (higher order). Thus, we con-

firmed that the lowest order term in S3 is identical with
the expression α

∑
i(qi − 6)2 described above upto multi-

plicative constant. We note that the similarity between S3

of equation (2) and a deficit angle term denoted by Stight

in [30] can also be seen.
We will see below that the fluid surfaces become crum-

pled, branched polymer like, and smooth, when α in-
creases from α = 0. A higher-order transition separates
the branched polymer phase from the crumpled one, and
a first-order transition separates the branched polymer
phase from the smooth one. On the other hand, we find
in [34] that the fluid surfaces become crumpled, branched
polymer, and crumpled, with increasing α. One of the
transitions is of higher (or second) order, and the other
is of first order, in the model of [34].

It should also be noted on differences between S3(δ)
of equation (2) and the corresponding term S3(q) =∑

i log(qi/6), which can be expanded to
∑

i(qi − 6)2 +
(higher order) as described above. Although the difference
between these two S3 comes only from the one between q
and δ, the roles of q and δ in the model make large dif-
ferences in the results. A major difference between the
fluid model in this paper and the one in [34] is whether
the model has a smooth phase or not. q is unchanged in
the MC update of X , whereas δ changes in that process.
As a consequence, while the coordination dependent term
S3(q) is non-trivial only in the fluid model, S3(δ) in equa-

tion (2) is non-trivial both in the tethered and in the fluid
models. In fact, the model with

∑
i(qi−6)2 has no smooth

phase [34], whereas the model with S3(δ) in equation (2)
has the smooth phase both in the tethered and in the fluid
surfaces as we will see below.

3 Monte Carlo simulations

The spherical surfaces, the starting configurations of MC
for the fluid model, are discretized by the Voronoi trian-
gulation [41] in R3. The radii of the initial spheres are
chosen so that S1/N � 3/2. The surfaces are constructed
relatively uniform in coordination number; the maximum
coordination number is about 8.

On the contrary, the uniform lattices, on which the
tethered model is defined, were obtained by MC with
dynamical triangulation for a model defined by S =
S1 + bS2 − α

∑
i log(qi/6), where S2 =

∑
i(1 − cos θi) is

the bending energy. Using the parameters α = 280, b = 2
(or α = 350, b = 2), we obtained the uniform lattices.
By monitoring the number N5 of vertices of qi = 5, we
stopped the MC run when N5 first reduced to 12, and thus
obtained the uniform lattices. The uniform lattices, which
will be utilized in simulations for the tethered model, are
thus characterized by N5 = 12 and N6 = 3N −18. In each
lattice, only 12 vertices are of qi = 5, and all other vertices
are of qi = 6. Except the lattices of N5 = 12, there exists
no lattice whose qi are of qi = 5 or qi = 6. This is easily
understood from the fact that NB = 3N − 6 on triangu-
lated surfaces of spherical topology, where NB is the total
number of bonds.

The canonical Metropolis MC technique is used to up-
date the variables X and T . In the MC simulations, the
new position of X is chosen so that X ′ = X + δX , where
δX takes value randomly in a small sphere. The radius δr
of the small sphere is defined by using a constant number ε
as an input parameter so that

δr = ε 〈l〉, (3)

where 〈l〉 is the mean bond length computed at ev-
ery 250 MCS (Monte Carlo sweeps), and 〈l〉 is constant
in the equilibrium configurations because S1/N = 3/2.
The new position X ′ is accepted with the probability
Min[1, exp(−∆S)], where ∆S = S(new) − S(old). The
parameter ε in equation (3) is chosen to maintain about
50% ∼ 60% acceptance for X . A lower bound 10−6 × A0

is assumed for the area of triangles, where A0 is the mean
area of triangles evaluated at every 250 MCS. X ′ is gen-
erated so that the resulting areas of triangles are larger
than 10−6 ×A0. It should be emphasized that the results
obtained by using δr in equation (3) are identical with
those by using a constant δr.

The triangulation T is updated by the bond flip. Then,
the acceptance rate rT for the bond flip is uncontrollable.
We have, in our MC simulations, 15% ≤ rT ≤ 35%, and
find that rT discontinuously changes at a discontinuous
transition which will be shown below.
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Fig. 1. (a) A(X2) at α = 1400 and at α = 1600 on N = 1500
fluid surface, and (b) the acceptance rates rX for X and rT

for T of the fluid surface model.

The bond is flipped so that the resulting areas of trian-
gles are larger than 10−6×A0 as in the process for X . No
restriction is imposed on the bond length in the update of
the variables X and T . The maximum coordination num-
ber qmax

i of the fluid surface of size N = 1500 was about
qmax
i � 20 both in the smooth phase and in the branched

polymer phase, and qmax
i � 30 in the crumpled phase.

The histogram h(q) of the coordination number q will be
shown below. N -trials for X and N -trials for T make one
MCS in the fluid model.

The canonical ensemble average 〈Q〉 is computed via
the time series average of a series {Qi}. A series {Qi} is
sampled at every 500 MCS after thermalization sweeps,
which are large enough so that the mean square size X2,
defined by

X2 =
1
N

∑

i

(
Xi − X̄

)2
, X̄ =

1
N

∑

i

Xi, (4)

becomes statistically independent from the starting con-
figurations. In fact, 0.5 × 107 MCS are discarded for the
thermalization of surfaces of N ≤ 600, and 1 × 107 MCS
for N ≥ 1000 surfaces. Total number of MCS is about
(8 ∼ 10) × 107 at the vicinity of the transition point of
N ≥ 1000 fluid model and of N ≥ 1500 tethered model,
and it is relatively smaller in other cases.

The model membrane is expected to swell out at
large α and crumple at small α. Therefore, the shape of
membrane, which is an extrinsic property of surfaces, is
characterized by X2. In order to see the correlation in the
series of X2, the autocorrelation coefficient

A(X2) =
∑

i X2(τi)X2(τi+1)

[
∑

i X2(τi)]
2 , (5)

τi+1 = τi + n × 500, n = 1, 2, · · ·

is plotted in Figure 1a, where X2(τi) is sampled at every
n × 500 (n = 1, 2, · · · ) MCS. We easily see in Figure 1a
that A(X2) at α = 1400 and the one at α = 1600 are
completely different from each other. This result implies
that the convergence speed of our MC on N = 1500 fluid
surfaces at α = 1400 is about 10 times slower than that
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N=1500
fluid

h(q)

q 5 10 15

α=1600
N=1500
fluid

(c)

q5 10 15

(b) α=500
N=1500
fluid

q

Fig. 2. The normalized histograms h(q) of the coordination
number q of the fluid surface of N = 1500 at (a) α = 10
(crumpled phase), (b) α = 500 (branched polymer phase), and
(c) α = 1600 (smooth phase).

at α = 1600, and indicates the existence of some discon-
tinuous phase transition.

The rate of acceptance rX for X and rT for bond flip
are plotted in Figure 1b. We see in Figure 1b that rX

is almost constant and rT is discontinuous. In order to
maintain 0.5 ≤ rX ≤ 0.6, we adjust ε in equation (3) to
a suitable value, because rX rapidly changes against α at
the transition point. This is the reason why rX is not
completely constant. The discontinuous behavior of rT

also indicates that the model undergoes a discontinuous
transition.

In order to see the distribution of the coordination
number q, the normalized histograms h(q) are shown in
Figures 2a, b, and c. The histograms h(q) in the figures
were obtained in the final 5 × 106 MCS on the fluid sur-
face of N = 1500 at (a) α = 10, (b) α = 500, and
(c) α = 1600. These three values of α correspond to three
distinct phases; the crumpled, the branched polymer, and
the smooth phases, which will be clarified later. We note
that the coordination number q does not always reach the
above mentioned qmax

i the maximum coordination number
during the final 5 × 106 MCS in each case. Thus, we find
from Figures 2a, b, and c that the coordination number q
is dominated by 4 ≤ q ≤ 7 at each α in the fluid model.
No distinct difference can be seen in h(q) obtained in the
three phases, although it can bee seen that h(q = 3) in
the crumpled phase at α = 10 is larger than those in the
other two phases. It is remarkable that h(q) in the smooth
phase shown in Figure 2c is almost identical with h(q) in
the branched polymer phase shown in Figure 2b, because
we expect that the curvature energy S3 is closely related
with the coordination number q and plays an essential
role in the phase transition. The variation of q is also very
small even at the discontinuous transition point between
the branched polymer and the smooth phases.

Nevertheless, we can find in S3/N a discontinuous
change, which reflects a discontinuous transition between
the branched polymer and the smooth phases, in both
models. However, the gap in S3/N is very small and com-
parable with the standard deviation of S3/N . Hence, we
can not conclude only from the gap that the model un-
dergoes a discontinuous transition.

S1/N vs. b are plotted in Figures 3a and b. We see
in Figure 3a that the expected relation S1/N = 3/2 is
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Fig. 3. (a) S1/N obtained from N = 1500 and N = 2500
tethered surfaces, and (b) S1/N obtained from N = 1000 and
N = 1500 fluid surfaces.
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Fig. 4. X2 vs. α of (a) tethered surface model and of (b) fluid
surface model. Dashed lines in (b) denote the phase boundaries
on N = 1500 fluid surfaces.

satisfied in the tethered model, and also in Figure 3b that
S1/N = 3/2 in the fluid model. The discontinuous change
seen in S1/N of N = 1500 in Figure 3b implies the exis-
tence of a discontinuous transition. Since the gap is almost
equal to or less than 0.4% of S1/N , we consider that the
relation S1/N = 3/2 is not influenced by the discontinu-
ous transition. Thus, we understand that the surfaces in
both sides of the transition point are in the equilibrium
configurations prescribed by Z of equation (1).

The mean square size X2 is plotted in Figures 4a and b.
In the tethered model, X2 is obtained on surfaces of size
up to N = 2500. We see a gap in each X2 in the tethered
model. These discontinuous changes of X2 imply that the
phase transition is of first order. On the other hand, the
dependence of X2 on α in the fluid model appears to be
continuous on surfaces of N = 1000 and N = 1500. The
reason why X2 takes intermediate values at α just below
the transition point is that the surface belongs to a new
phase, which emerges only in the fluid model. This new
phase resembles the branched polymer phase [34–36] in
shape of the surfaces, which will be shown as a snapshot
below. Thus, we call the phase as the branched polymer
phase, although we can hardly confirm that the new phase
is exactly identical with a branched polymer phase from
the present numerical results.

It should also be noted that the fluid surfaces be-
come crumpled when α → 0, as seen in Figure 4b. The
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Fig. 5. X2 vs. N on (a) tethered surfaces and on (b) fluid
surfaces. X2 denoted by smooth in (a) and (b) were obtained in
the smooth phase close at the transition point in both models.
X2 denoted by crumpled in (a) were obtained just below the
transition point. X2 of surfaces N ≤ 600 denoted by crumpled
in (b) were obtained just below the transition point, and those
of N ≥ 1000 were obtained at α = 10.

dashed lines drawn vertically in Figure 4b denote the
phase boundaries of the fluid surfaces of size N = 1500.
The leftmost data X2 in Figure 4b were obtained at
α = 10 on surfaces of N = 1000 and N = 1500, and their
dependence on N clearly different from those obtained at
larger α. Thus, we considered that the phase boundary
between the crumpled and the branched polymer phases
is located close at α = 10.

Figures 5a and b are log-log plots of X2 against N .
X2 denoted by smooth in the figures were obtained in the
smooth phase close at the transition point in both mod-
els. X2 denoted by crumpled in the tethered model were
obtained just below the transition point. X2 denoted by
crumpled in the fluid model of N ≤ 600 were obtained just
below the transition point, and those of N ≥ 1000 were
obtained at α = 10. The straight lines give the Hausdorff
dimension H , which is defined by

X2 ∼ N
2
H . (6)

The surface swells and becomes almost smooth in the
smooth phase both in the tethered model and in the fluid
model; we already confirmed this from the data in Fig-
ures 4a and b. X2 has a value of the order of the radius
squares when the membrane becomes a swollen sphere.
Hence, we expect that H � 2 in the smooth phase. We
have in fact

H = 2.11 ± 0.03 (tethered, smooth),
H = 10.47 ± 1.23 (tethered, crumpled), (7)
H = 1.99 ± 0.07 (fluid, smooth),
H = 4.15 ± 0.47 (fluid, crumpled).

The results in equation (7) obtained in the tethered
model indicate that the phase transition between the
crumpled and the smooth phases is characterized also by
a gap of H . The reason why H is finite in the crumpled
phase comes from the fact that X2 are obtained close at
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∑
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the transition point, which is far distant from α = 0, where
H is expected to be infinite.

In the fluid model, on the contrary, the dependence
of H on α in the branched polymer phase can not be
extracted from the present numerical data. In order to
see how H depends on α in the branched polymer phase,
large-scale simulations are necessary. Nevertheless, it is
possible that H continuously changes against α in the fluid
model, if the new phase is the branched polymer one. In
fact, it is expected that H � 2 in the branched polymer
phase [34–36]. In addition, we see in Figure 4b that X2

smoothly changes between the branched polymer phase
and the crumpled phase.

Figures 6a and b are the bending energy S2/NB vs. α
respectively obtained on the tethered surfaces and on the
fluid surfaces, where S2 is defined by S2 =

∑
i(1− cos θi),

NB the total number of bonds. S2, which is an extrinsic
variable and is not included in the Hamiltonian, represents
how smooth the surface is. The gap seen in S2/NB also
indicates that the phase transition is of first order. Thus,
we see a first-order transition between the smooth and
the crumpled phase in the tethered model, and also see a
first-order transition between the smooth phase and the
branched polymer phase in the fluid model.

We note that first-order nature of transitions is ordi-
narily confirmed by a discontinuous change (or a gap) of
energy term included in Hamiltonian. A gap in some phys-
ical quantity that is not included in Hamiltonian can also
confirm loosely a first-order nature of transitions. Thus,
we consider that the gap in X2 in Figures 4a and b, and
the gap in S2 in Figures 6a and b indicate the existence
of first order transitions.

Figures 7a, b and c are snapshots of surfaces obtained
respectively at the smooth phase, at the branched poly-
mer phase, and at the crumpled phase in the fluid surface
model. The tethered surface model gives the same appear-
ance of surfaces as the fluid surface model both in smooth
and in crumpled phases, although the tethered model has
no branched polymer phase.

Fig. 7. Snapshots of fluid surface obtained in (a) the crumpled
phase at α = 10, (b) the branched polymer phase at α = 1200,
and (c) the smooth phase at α = 1600. Small spheres represent
the vertices. N = 1500.

4 Summary and conclusions

We have studied extrinsic properties of surface models of
membranes embedded in R3. The Hamiltonian contains
the Gaussian energy term S1 and the deficit angle term S3;
S = S1 − αS3. This S3 was introduced by a straightfor-
ward extension of the coordination dependent term, which
comes from the weight of the integration measure dX .
Two kinds of models were investigated: one is a tethered
model and the other is a fluid one. We found in the teth-
ered model that there are two distinct phases; smooth and
crumpled, and that these phases are connected by a dis-
continuous transition. It was also found in the fluid model
that there is a new phase (branched polymer phase) be-
tween the smooth and the crumpled phases. A discontinu-
ous transition separates the branched polymer phase from
the smooth one in the fluid model. Although we called
the new phase in the fluid model as the branched poly-
mer phase, large scale simulations are necessary to confirm
that the new phase is exactly identical with the branched
polymer one.
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